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Abstract

Based on the results obtained within the scope of the model of piecewise-homogeneous medium and three-dimen-
sional stability theory, the accuracy of the continuum theory is examined for laminated incompressible materials un-
dergoing large deformations. Estimation of the accuracy of the continuum theory is illustrated by numerical results for
the particular models of composites when the layers are hyperelastic materials with the elastic potential of the neo-
Hookean type (Treloar’s potential). Based on this the influence of the layers’ thickness and their stiffness on the ac-
curacy of the continuum theory is determined. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

One of the most interesting and inadequately investigated phenomena in mechanics of composites is
fracture (instability) in compression when mechanisms of failure, specific to heterogeneous media only, are
revealed. It should be underlined that zones of compressive stresses can appear in composite structures even
under tensile loads. They could be due to the presence of holes, cut-outs and cracks, or generated by impact.
The task of deriving three-dimensional (3-D) analytical (closed-form) solutions for such problems is con-
sidered as one of great importance. Such solutions, if obtained, give the possibility to analyse the behaviour
of a structure on the wide range of material properties and to make certain predictions not worrying about
applicability of approximate methods.

In mechanics of heterogeneous (piecewise-homogeneous) media, there are two different methods to
describe the behaviour of solids. One of them is based on the model of piecewise-homogeneous medium
(Fig. 1a), when each component of material is described by 3-D equations of solid mechanics, provided
certain boundary conditions are satisfied at the interfaces. This approach enables one to investigate in the
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Fig. 1. Model of (a) piecewise-homogeneous medium and (b) continuum theory.

most rigorous way any phenomena in the internal structure of solids. However, due to its complexity this
method is restricted to a very small group of problems. The other approach, or continuum theory (Fig. 1b),
involves significant simplifications. Within the continuum theory a solid (e.g. a composite) is simulated by
homogeneous anisotropic material with effective constants, by means of which physical properties of the
original rock, shape and volume fraction of the constituents are taken into account. The continuum theory
may be applied when the scale of investigated phenomena (for example, the wavelength of the mode of
stability loss /) is considerably larger than the scale of material structure (say, the layer thickness £), i.e.

1> h. (1)

The approach based on the model of piecewise-homogeneous medium is free from such restrictions and is,
therefore, the most accurate one.

The wide usage of the continuum theory due to its simplicity in comparison with the model of piecewise-
homogeneous medium puts into consideration the questions of its accuracy and of its domain of appli-
cability. The answer to it can be given by comparison of the results delivered by both continuum theory and
the most accurate approach; the latter imposes no restrictions on the scale of investigated phenomena, and
therefore, has a much larger domain of applicability than the first one. The results obtained within the
continuum theory must follow from those obtained using the model of piecewise-homogeneous medium if
the ratio between the scale of structure and the scale of phenomenon tends to zero, i.e. when

hi™' = 0. (2)

If this is the case, the continuum theory can be regarded as asymptotically accurate.

Except the exact approaches, which are based on the 3-D stability theory expounded, for instance, in the
work of Guz (1999), there are also approximate approaches to the considered problem proposed by Rosen
(1965) and by many other authors. Detailed reviews of these approximate approaches are given, for ex-
ample, by Soutis (1991,1996), Schultheisz and Waas (1996) and Guz and Lapusta (1999). However, the
approximate approaches proved to be not worth applying. This is discussed in some detail in Section 2.

In the past, investigations of the continuum theory accuracy in relation to the model of piecewise-
homogeneous medium were performed only for other physical phenomena (for example, for the problems
of wave propagation) by Rytov (1956) and Brekhovskih (1979) or for other models of layers (namely,
compressible linear elastic) by Guz and Soutis (1999a,b, 2000). Besides this, validation of the Cosserat-
continuum approach to buckling of linear elastic medium was considered by Papamichos et al. (1990) and
Vardoulakis and Sulem (1995), where only numerical solutions by the “transfer matrix technique” for
particular layered media were used. But, there are not yet such investigations for problems on stability loss
in composite structures undergoing finite (large) deformations. This paper attempts to fill that gap. It is
devoted to substantiation of the continuum theory (Guz, 1990) applied to predict fracture of a laminated
composite material with a periodical structure undergoing large deformations in uniaxial compression.
Within the scope of this theory, the moment of stability loss in the structure of the material — internal
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instability according to Biot (1965) — is treated as the beginning of the fracture process. Special attention is
paid to the calculation of the continuum theory accuracy for the particular laminated composites consisting
of hyperelastic materials, taking into account the influence of geometrical and mechanical properties of the
individual layers.

2. Instability (microbuckling) of composites under large deformations
2.1. Problem statement within the scope of the piecewise-homogeneous medium model

Let us briefly consider the statement of the stability problem (microbuckling) for composites undergoing
large deformations. Let the composite consists of alternating layers with thicknesses 2/, and 2k, (Fig. 2),
which are simulated by incompressible, non-linear, elastic, isotropic or orthotropic solids with general form
of constitutive equations. The material is uniaxially compressed in the plane of layers by “dead” loads
applied at infinity in such a manner that equal deformations along all layers are provided and, therefore, the
plain strain problem should be considered. Since the analysis is based on previous works by the authors
(Guz and Soutis, 1999a,b) and on general approaches developed by Guz (1990, 1999), some equations
derived earlier will be given for the sake of clarity.

Within the scope of the most accurate approach, i.e. using the model of piecewise-homogeneous medium
and equations of the 3-D linearised stability theory by Guz (1999), we have to solve the following eigen-
value problem. Henceforth all values corresponding to the precritical state will be marked by the super-
script ‘0’ to distinguish them from perturbations of the same values. Indices r and m show that the value is
relevant to fibre (reinforcement) or matrix, respectively. The axial displacement, u?, and strain, ag, (in terms
of the shortening factor /; in the direction of OX; axis) for the considered type of loading are

w = (4 — 1)x;, 4 = const, g = (4 —1)d;, where d;; is the Kronecker symbol. (3)

The stability equations for the individual layers are

a%jtfj:O, a%tg?:o, i,j=1,2,3. 4)
The non-symmetrical stress tensor #; is referred to the unit area of the relevant surface elements in the
undeformed state (in the reference configuration). Namely, ¢; is a stress component acting in direction of
OX; at the elementary area with normal OX;. This is non-symmetrical Piola—Kirchhoff stress tensor or
nominal stress tensor using the terminology of Hill (1958). Further, we shall consider also the symmetrical
stress tensor S;; which reduces to g;; for the case of small precritical deformations. For incompressible
solids, stresses are related to displacements by (p is hydrostatic pressure)

Fig. 2. The co-ordinate system and applied loads (uniform uniaxial compression).
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Ou, .
lij = Kijop =— 6 -+ 5’/qua qi = 4 : (5)

with the incompressibility condition
Jdaks = 1. (6)

Components of the tensor k depend on material properties and on loads (i.e. on precritical state). The
quantity characterising the precritical state, i.e. stress S0 or strain 8 , 1s the parameter with respect to which
the eigenvalue problem should be solved. In the most general case

Kijap = Aj2a[050upApi + (1 = 051) (0120t + 0ip0jatys)] + 51/;5”5/;/; ™

The particular expressions for x;;,s for numerous kinds of constitutive equations were obtained by Guz
(1999). For example, for general elastic solids,

Aﬁl(f’ 7 "1) and Hpi = /“Lﬁl(fv WAl nl) (8)
where
Sy = (e e, 8%). o

For hyperelastic solids, if @ is the strain energy density function (elastic potential),

Ap = Ap(P 7n1) and #/ff:ﬂ/f:(¢73nz) (10)

To complete the problem statement, the boundary conditions should be written for each individual in-
terface, i.e.
y =y, hy =1y, Uy =uy, U =uy. (11)
Characteristic determinants were derived for the plane (Guz, 1982) and for non-axisymmetrical 3-D
problems (Guz, 1989) by the most accurate approach (i.e. within the model of piecewise-homogeneous
medium) for four modes of stability loss (Fig. 3). For example, for the case of uniaxial compression (Fig. 2)
they can be expressed as

det|ll =0, r1,s=1,23,4, (12)

where for the first mode of stability loss, which is called the shear mode according to Rosen (1965),

B = ()sz’crlnzlz + nrznz’clznnz) coshamny', B, = (1172’51‘1212 + ’irznz’c?nz) coshouny,

Bis = (’1172’61212 + 7152 K5112) coshongy, By = (’1172’4212 + ’7§2K5112) cosho, 3,

Bar = (ﬁ’?zmz’czmuz - ’lfzkrzr;zz - ﬁ"rlnm + 2KY15y + K315 sinh oy,

Ban = (ﬁ’?glz’czm ’1 K — ﬁ"ﬁnm + 2KY15y + Kiap)05 sinh oy, (13)
Bas = (ﬁ"’r Kajpp — i172’65222 - /ﬁ"im + 2K)155 + K1) sinhoay iy,

12t =2 r 22 r r r r o r
Bos = (”1’73 Ko — A1 Ky — A1Kypyy 2K 150 + Koy )03 sinh oy,
- S m s m _— I o1 I _— ) T
By = ny sinhowny', By, = ny sinhanny', P33 = nysinhogy,, iy = nisinhogns,
-2 m -2 m -2 r -2 r
Bar = Ay coshomny',  fuy = A" coshomny’,  Bay = A, coshouny,  fuy = 4,7 coshouiy
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Fig. 3. Modes of stability loss.

and for the second mode of stability loss, which is called the extension mode according to Rosen (1965),

_ -2 m m? m : m o -2 m m2 m . m
ﬁn = (4 K0 + 3 K5p) sinhamny’, By = (47 Ky, + 03" K55,) sinham

=4 2”‘1212 + 15 K2112)Smh°‘r’72a Bia = (A ko, + 115 K2112)Smh0‘r’13,
ﬁ21 = ( 1y K2112 }“1_ K3y — /1%"1111111 + 2K\15y + Koy coshomny',
Ba = ( s K2112 ’1172’62%22 - j‘%Kllnlll + 2KY15y + K315 coshomny', (14)
Bz = ( 1'72 K — ’1;2K5222 - 'ﬁ’cim + 2K19 + K1) cOsho;,

_ T -2 r 2. r T r r r
Boa = (5 o1y = 2 Ky = A1y, 2060 i51) 5 coshu,
m m m m I I I I
B3 =y coshawmny',  Bs; = ny coshamny', B3z = nycoshownsy,  fzy = nycoshans,
2 . 2 . 2 . 2 . .
Par = A; sinhonny', i = A sinhowny, P43 = A sinhown;, i = A, sinhogrny;.

Normalised wavelengths o, and o, are related to the layer thickness and to the half-wavelength, /, of modes
of stability loss along the OX; axis as

o = whl™", oy = mhnl " (15)
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2.2. On the applicability of the approximate approach

The approximate theories do not describe the phenomenon under consideration even on the qualitative
level. It was proved (Guz, 1990; Guz and Soutis, 1999b) that they give a huge discrepancy in comparison
with the exact approach and with experimental data. For example, even for the simplest case of all linear
elastic compressible layers of a composite undergoing small precritical deformations and considered within
the scope of geometrically linear theory, the Rosen model (Rosen, 1965) for the shear and extension modes
are not worth applying. Indeed, the Rosen model may give not only critical strains which are significantly
higher than those obtained by the exact approach but sometimes predicts even the mode of stability loss
different from that obtained within the exact approach. Moreover, even the continuum theory (Guz, 1990)
based on equations of the 3-D stability theory (i.e. the exact approach) gives much better results than the
Rosen model. Indeed, critical strains predicted by the Rosen model for the shear mode are always higher
than those measured by Soutis (1991) or predicted by the continuum theory, and for small volume fractions
of matrix the approximate approach gives just physically unrealistic strength limits. In spite of using the
model of piecewise-homogeneous medium, the Rosen theory involves considerable simplifications: mod-
elling of the stiff layers by the thin beam theory and the one-dimensional model for the matrix. It makes the
results of this method inaccurate even for simple cases. For more complicated models which take into
account large deformations and geometrical and physical non-linearity (e.g. those considered in this paper),
the approximate theory is definitely inapplicable and one can expect even a bigger difference between the
exact and approximate approaches.

3. Analysis of solutions obtained by the model of piecewise-homogeneous medium
3.1. Limit transition to the long-wave asymptotic

To perform the asymptotic analysis we should apply the condition of applicability of the continuum
theory (Eq. (2)) to all formulae and calculate the limits analytically under this condition, which yields
o —0, oy —0, coshun;,— 1, coshowny — 1, sinhon; — o),
. (16)
sinhon — oy}, j=2,3.
As a result of such manipulations, we can obtain the long-wave approximation (if o« — 0 then / — o0). On
substitution of Eq. (16) into characteristic determinants (12) derived earlier, we find, after a number of
rearrangements, that the characteristic equations reduce to the following:

For the first mode of stability loss

(”rz - ”rz)(’?mz — ’7m2)n2 I [ ro\2 ho r I
: : lzjz : h_(K1212 — Kop)” — h_K1221 + Koo ) ( K21 + 7 I Ko | | = 0. (17)
1 r r

Second mode of stability loss

r2 rZ m2
(ny —m3)(ny — 3’ )’lz 3 )“1"2112"2112 =0. (18)
Third mode of stability loss

r2 2 m? r,r,m,_m hm
(s — 5 ) (™ — ™ )yt 7 )Zszsz(h—H) =0. (19)

Fourth mode of stability loss

2

I rz 2
(my —n3 )(ny" —n3 )’72773’1 Ka112K3112 = 0. (20)
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3.2. Analysis of equations for the particular modes of instability

Let us examine the characteristic Eqs. (17)—(20), which correspond, after the limit transition, to the
continuum theory. It was proved that for the considered models of layers, the roots of the characteristic
equations (i.e. parameters (n;.)zand(n;?“)z, which depend on the components of tensor x and therefore on
properties of the layers and applied loads) are always real and positive. This means, that

Re(3)’ >0, Im(n5)* =0, Re(ny)’ >0, Im(r})’ =0, o
Re(r;)’ >0, Im(y})* =0, Re(n})’ >0, Im(y3)*=0.

Also, it is obvious that the solutions, which correspond to the considered phenomenon of internal insta-
bility, must depend on the properties of both alternating layers, i.e. on the ratio 4, /hy,.

Taking into account Eq. (21), one can check that Egs. (18)—(20), which correspond to the second, third
and fourth modes of stability loss, respectively, do not have such solutions and, therefore, do not describe
the internal instability in the long-wave approximation. It also means that modes of stability loss, other
than the first (shear) mode, cannot be described by the continuum theory. Of course, the equations for these
modes might have roots within the most accurate approach, i.e. within the model of piecewise-homoge-
neous medium, Eq. (12). The example of the second mode having roots will be given later in Fig. 4.

Eq. (8), which corresponds to the first mode of stability loss, generally speaking, may have roots related
to the internal instability of the considered materials. This needs a more detailed investigation, which is the
next task. For the further analysis, components of tensor k can be expressed (Guz, 1999) as

r 92 r r _ 22 r 0 \T r _r
Ko = AiMns Kl = A0 M + (1) Ko = fis

1
m m m - m m m m (22)
Koy = /1%/‘127 Ky = 44 2:“12 + (S?l) v K = Hpp-
Substituting Eq. (22) into characteristic Eq. (17), for the first (shear) mode we derive
hm r m r hm m r hm m m hm r
™ (), — #12)2 = | My T h_ﬂlz + )f ((S?l) + ™ (S?l) )} (le + h_.un) =0. (23)

In order to analyse Eq. (23), the effective values of stresses and of quantity y,,, denoted respectively as
<S§’1> and (u,,), will be utilised. At the moment of material stability loss they can be calculated as

<S?1> = (S?l)rVr* + (S?l)m Vs (12) = taugy (1, Vi + 1 Vr*)ilv (24)

where V* and V! are the volume fractions of the components in the deformed state. Due to the kind of
applied loads (Fig. 2), the volume fractions of the components in the undeformed (7}, V;,) and deformed
states are equal for the same components. Indeed, taking account of Eq. (3) we have

Aoy hy . 25 him B
I/l‘a Ve = T m - = Vm.
T et A h Byt

*

C W he o+ Ahy b+

(25)

Let us denote the theoretical strength limit as (IT; ). Substituting Eqs. (15) and (16) into Eq. (14), after
some rearrangement, we get

() = _<S§)1> = ;“;2<ﬂ12>' (26)

This coincides with the results derived within the scope of the continuum theory (Guz, 1990) as applied to
non-linear laminated composites undergoing large deformations. Typical critical values of 4, are presented
in Section 4 for neo-Hookean materials.
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Fig. 4. Solutions of the characteristic equations for the case of the most accurate problem statement: values of 4, (shortening factor)
plotted against o, (normalised wavelength) for the first (shear) and second (extension) modes of stability loss; Cj,/Ch = 50,
he/hm = 0.12.

It should be noted that within the scope of the continuum theory, Eq. (26) gives the theoretical strength
limit for non-linear, elastic, incompressible composites as a function of (u,,), i.e. the effective value of
quantity u,,, which is related to the material properties by Eq. (24). This theoretical strength limit is written
for the general form of constitutive equations for layers. If one needs a concrete expression for particular
kind of the layers’ properties, it can be determined using the formulae for u}, and u}5 presented by Guz
(1990, 1999). For example, for the case of all linear elastic, isotropic, compressible layers

() = _<0'(1)1> = (G2), (27)

where (G,) is the effective shear modulus of the laminated composite.

Thus, it is rigorously proved for laminated, non-linear, elastic composites undergoing large deformations
in uniaxial compression that the results of the continuum theory follow as a long-wave approximation from
those for the first mode of stability loss obtained using the model of piecewise-homogeneous medium.
Therefore, the asymptotic accuracy of the continuum theory for such composites is established.

It should be underlined that the analytical 3-D approach developed in the present subsection can be
applied not only to laminated composites but to any piecewise-homogeneous, layered system with similar
constituent properties undergoing uniaxial compression.
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4. Results for hyperelastic non-linear materials
4.1. Treloar’s potential

As an example, let us consider a composite consisting of alternating, non-linear, elastic, isotropic, in-
compressible layers with different properties (Fig. 2). Suppose also that materials of these layers are hy-
perelastic (Eq. 10), and the simplified version of Mooney’s potential, namely neo-Hookean potential, may
be chosen for their description in the following form:

O =20 J1(e0), O™ =2CRIN(e)), (28)

where Cjo is a material constant and 7, (¢) is the first algebraic invariant of Cauchy—Green strain tensor.
This potential is also called Treloar’s potential, after the author who obtained it from an analysis of model
of rubber regarded as a system of long molecular interlinking chains (Treloar, 1955).

It should be noted here that the simpler case (namely, compressible, linear, elastic materials under small
deformations) was considered by Guz and Soutis (2000). For transition to the classical linear theory of
elasticity under small deformations, we can put in Eq. (28)

E
2010 = G, G = g, vy=20.5. (29)

Due to the type of applied loads
N =i=h. (30)

Since the plane strain state is considered in the precritical state, from the condition of incompressibility (Eq.
(6)) we derive

N=ir=1, A== (31)
Then for uniaxial compression the components of the tensor x for this model are expressed, according to
Egs. (3), 5)-(7), (10), (28), (30) and (31), as

< = 2C(1 + /11_4)7 Ky = 4Cly,  Kippp = 2Cf011_27 Kinpy = Kajpp = 2Cjg, Ky =0,

32)
m _ m —4 m _ m m _ m 7—2 m _..m _ m m _ (
ki =200+ 477), Ky =4CY, KD, =204, Ky = Ky, = 2CY,  Kijp =0

and, therefore,
mh=A0 mi=1, =7 np =1 (33)

Substituting Egs. (32) and (33) into the characteristic equations (12) derived earlier for the four con-
sidered modes of stability loss, four transcendental equations were deduced for the case of the model of
piecewise-homogeneous medium. Then for each of the modes we have a different characteristic equation in
terms of two variables, A; (shortening factor) and o, (normalised wavelength). For example, after some
manipulations (Guz, 1982), the equations become
o for the first (shear) mode, from Egs. (12), (13), (32) and (33),

272142071 = Cy (€)' tanh o A, 2 tanh oy Ay 2 — 4221 — C(C) ') tanh o, tanh oz,
+ 2= (14 2)Co(Cm) " tanh o, 2, tanh oy, + [1 + 2 — 2C7,(C) ') tanh o, tanh o 4, (34)
+ (1= i)*cry(cmy ' (tanh o, tanh o 2, % + tanhoy, tanh oy, 4,2) =0;
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o for the second (extension) mode, from Egs. (12), (14), (32) and (33),

2714231 = € (€)' tanh o, A2 coth o A7 — 422[1 — CFy(C™) ') tanh o, coth oy,
+ 2= (1 +HC (€)' tanh oy 2,2 cothay, + [1 + 47 — 2C5,(CB) ') tanh o, coth o 4, (35)
+ (1 =2)*Cry(C™) " (tanho, tanh oy A, % + coth oy, coth o, 4,2) =0.

The shortening factor 4, is related to the value of strain &}, by Eq. (1) and is used here for convenience sake.
As the result of solution, four dependences )V(lm(ocr) are obtained, where N = 1,2,3,4 is the number of
mode. The examples of such dependences are presented in Fig. 4 for the first and second modes. The critical
value for the particular mode )»g ) can be found as a maximum of the corresponding dependence. The
maximum of these four values will be the critical shortening factor of internal instability for the considered
laminated material determined by the most accurate approach (4).

On the other hand, substitution of Egs. (32) and (33) into Egs. (17)—(20) yields the long-wave ap-
proximation (i.e. the asymptotic under the condition o, — 0) for the characteristic equations for this
particular model. As was proved in the previous section, the solution of Eq. (17) will correspond to the
results of the continuum theory. Hence, the dependence lgl)(ar), calculated for the first mode, gives results
of the continuum theory 1., if we put o, — 0. Therefore, the accuracy of the continuum theory A (i.e. the

1007 e e
- |I "'
i
94 It
1
[
1
1
b
%4 |
c\c ]
Fo !
14 |
[}
= 1
§ 97 A '.
£ [
‘E 1
o \
o \
j:) \
Z 96 \
o
Z
<
g —— h/hy=021
S 94 /L h/h,=0.17
——— h/hy=0.14
— h/he=0.12
94 -
93 . . . . . . . . . . .
0 5 10 15 20 25 30

Ratio of the material constants

Fig. 5. Values of parameter A plotted against C},/C}; for different values of layer thickness ratio A, //y,.
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ratio of the results obtained in the context of the most accurate approach and continuum theory expressed
in percentage) will be

; lim A (o) lim 1" (o)
A= ;m' % 100% = 2 - x 100% = "7 X 100%. o
Ler m]slxj‘cr m]\E[lX (maxiﬁm)

4.2. Numerical results

Values of the parameter A are given in Fig. 5 (for the interval of 1 < A4 < 30) and in Fig. 6 (for the
interval of 1 < A4 < 100 ) in the form of dependences on the ratio of the material constants Cj,/C}}. All
eight curves correspond to different values of layer thickness ratio, A./hy. It should be noted that for
plotting each point on the curves, plots similar to those in Fig. 4 had to be calculated and analysed fol-
lowing Section 4.1. These dependences have strongly non-linear character, proving the importance of
taking into account the materials’ non-linearity. Another interesting revelation consists of the fact that
the minimum values of all curves lie in the very narrow interval of the ratio of the material constants —
approximately between Cj,/Cjy =3 and Cj,/C}; = 4. One can also see that larger the ratio #/hy, the

100 1
95 4
90 -}
< 85 A)
B
g
£ g0
g
=
=
g
= 754
2
5
§ 70 4
§ — h/h,=0.11
s 64 /e hy/hw = 0.07
-==  h/h,=0.04
60 - — h/h,=0.01
55 4
50 T T T T T T T T T T T T T ]
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Ratio of the material constants

Fig. 6. Values of parameter A plotted against Cj,/Cy; for different values of layer thickness ratio A /hy,.
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higher is the accuracy of the continuum theory. It means that the increasing volume fraction of the stiffer
layers has a strong impact on the application of the continuum theory in making it more accurate.

5. Conclusions

The asymptotic accuracy of the continuum theory of compressive fracture is established for composites
consisting of incompressible, non-linear, elastic, orthotropic layers. It was rigorously proved that the results
of the continuum theory follow as a long-wave approximation from those for the first (shear) mode of
stability loss obtained using the model of piecewise-homogeneous medium. It is also shown that modes
of stability loss, other than the first (shear) mode, cannot be described by the continuum theory. Estimation
of accuracy of the continuum theory was obtained by comparison with the critical values, calculated using
the model of the piecewise-homogeneous medium (i.e. the most accurate result). This estimation was il-
lustrated in this paper by numerical results for the particular models of hyperelastic layers. At that, the
influence of the properties of layers and their thickness ratio on the accuracy of continuum theory was
established.

Following the general approach described in this paper the accuracy of the continuum theory as applied
to composites with other properties of layers or other kinds of loads can also be investigated.
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